PowerPol 2X PCR Mix with Dye

Catalog: RK20719

Size: 5 /25 /100 X 1 mL, 1 X10 mL

Concentration: 2X

Component:

PowerPol 2X PCR Mix with Dye

RM20388

Product Description

PowerPol 2X PCR Mix with Dye is an optimized premix containing DNA polymerase, dNTPs, MgCl₂, KCI and other stabilizers. This product is suitable for conventional PCR amplification. The template can be purified DNA, bacterial colonies/bacteria liquid, crude extract or cDNA, etc. This product can use complex genomic DNA as a template to amplify a target fragment of 5 kb in length or a simple template such as lambda DNA to amplify a target fragment of 10 kb in length. It is suitable for applications such as PCR reaction, colony PCR identification, vector construction and so on. etc.

Storage: -20°C

Product Source:

The DNA polymerase gene was induced and expressed in *E. coli* and obtained by separation and purification

Thermal Inactivation: No

5'-3'exonuclease activity: No

3'-5'exonuclease activity: Yes

Fidelity: 6X Taq

Product End: Blunt end

Operation Description

Standard Protocol:

• It is recommended to prepare all reaction components on ice, and then quickly transfer the reaction system to a thermocycler preheated to 98℃.

Recommended Reaction:

Components	25 μL	50 μL	Total Concentration
PowerPol 2X PCR Mix with Dye	12.5µL	25 µL	1X
Forward Primer (10	0.5 μL	1 μL	0.2 μΜ
Reverse Primer (10 μM)	0.5 μL	1 μL	0.2 μΜ
DNA Template*	Variable	Variable	<300 ng
Nuclease-free Water	to 25 µL	to 50 μL	N/A

^{*} Note: The optimal reaction concentration varies with different DNA templates. Please refer to the basic principles of PCR below.

Recommended PCR Program:

Step	Temp	Time	Cycles
Pre-denatura	0005	45 4	
tion	98°C	45 s*	1
Denaturation	98°C	10 s	
Annealing	55-65°C	30 s	30
Extension	72°C	20-30s/kb	
Post-extension	72°C	5min	1
Hold	4-12°C	∞	1

^{*} Note : The colony PCR conditions were used : pre-denaturation at 98°C for 2~5 minutes.

PCR Principles:

1. Template:

High-quality purified DNA templates are important to high-fidelity PCR reactions. The recommended DNA template amounts with different complexity are listed Below (For a 50µL reaction):

DNA	Input Amount	
Plants, animals and human	10 ng~100 ng	
gDNA		
<i>E</i> .coli,lambda gDNA	500 pg-200 ng	
Plasmid DNA	1 pg~10 ng	

Note: If the DNA template is obtained from a cDNA synthesis reaction, the template volume should be less than 10% of the total reaction volume. If long fragments are amplified, the amount of template input should be increased appropriately

2. Primers:

Oligonucleotide primers are typically 20-40 nucleotides in length with a GC content of 40-60%. Primers can be designed and analyzed using software

such as Primer 3. The final concentration of each primer in the PCR reaction system should be in the range of $0.1-1~\mu M$.

3. Denaturation:

98°C pre-denaturation for 45 s can fully denature most DNA templates. In the case of high complexity DNA templates, the pre-denaturation time should be extended up to 3 minutes for fully denaturation.

Generally, the recommended denaturation condition for low-complexity DNA templates is 98°C, 5-10 s

4. Annealing:

The annealing temperature of PowerPol 2X PCR Mix with Dye is usually higher than other PCR polymerases. Generally, primers longer than 20 nt are annealed at (lower primer Tm+3)°C for 10-30 s; when the primers are shorter than 20 nt, an annealing temperature equivalent to the lower primer Tm. When using a new primer set for PCR reaction, we recommend a gradient PCR to determine the optimal annealing temperature. In a two-step amplification protocol, the annealing temperature should be set to the extension temperature.

5. Extention:

The recommended extension temperature is 72°C. The extension time depends on the length and complexity of the amplicon. For the low-complexity amplicons (plasmid DNA), the extension condition is 10 s/kb. For high-complexity amplicons, it is recommended to increase the extension time to 20-30 s/kb. In some cases, the extension time for cDNA templates should be less than 1 min/kb

6. Cycles:

To obtain enough yield of PCR products, 25-35 cycles are recommended.

2